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Abstract

Let (Xt ) be a Gaussian ARMA process with spectral density

f,(X), where e is an unknown parameter. To estimate 8 we propose

a minimum contrast estimation method which includes the maximum

likelihood method and the quasi-masimum likelihood method as

special cases. Let eT be the minimum contrast estimator of e.

Then we derive the Edgeworth expansion of the distribution of aT

* up to third order, and prove its validity. By this Edgeworth

expansion we can see that this minimum contrast estimator is

always second-order asymptotically efficient in the class of

second-order asymptotically median unbiased estimators. Also

the third-order asymptotic comparisons among minimum contrast

estimators will be discussed.

.1!
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1. Introduction

Recently some systematic studies of higher order asymptotic

theory for stationary processes have been developed. In many

cases such studies have used the formal Edgeworth expansions.

-Thus it has been required to prove their validities. Go'tze and

*" Hipp (1983) showed that formal Edgeworth expansions are valid

*for sums of weakly dependent vectors. Durbin (1980) and Tani-

guchi (1984) showed the validity of Edgeworth expansions of sta-

tistics derived from observations which are not necessarily in-

dependent and identically distributed. However their sufficient

conditions for the validity are hard to check even in the funda-

mental statistics.

In this paper we propose a minimum contrast estimation method

which includes the maximum likelihood method and the quasi-maximum

likelihood method as special cases. Suppose that (Xt ) is a Gauss-

ian ARMA process with spectral density f,(%), where G is an un-

known parameter. Let T be the minimum contrast estimator of 8.
T

Then we give the Edgeworth expansion of the distribution of 8T up

to third order, and prove its validity. That is, as special cases

we get the valid Edgeworth expansions for the maximum likelihood

estimator and the quasi-maximum likelihood estimator which is de-

fined by the value minimizing I'T (log_ f(X) + IT (X)/f,(X))dk with

respect to 8, where IT(X) is the periodogram.

In Section 7 we consider the transformed statistic 6 =m
1

T T mT where m(-) is a smooth function. Then we give the

valid Edgeworth expansion for 8m. By this Edgeworth expansion
m

-. . . . . . . . . .

I ,.. -. . 'o':o- ? . . . 'i'n i ', .",-' ,'',-"-".. . . . .. . . . . . . .,.. .... .... .... . . . . ,-. . ..- . ; .. - " . .'-,-' ," .*""'' . -, i.. '-'- ..
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we can see that our minimum contrast estimator is always second-

order asymptotically efficient in the class of second order

asymptotically median unbiased estimators if efficiency is mea-

sured by the degree of concentration of the sampling distribu-

tion up to second order. Also the third-order asymptotic com-

parisons among minimum contrast estimators will be given.

I

4., '", ? i - ' ,,. -- - , - .-- i-- - - -,



4

2. Minimum Contrast Eastimator

We propose a minimum contrast estimator which includes the

maximum likelihood estimator and the quasi-maximum likelihood

estimator as special cases.

Let D and DC be spaces of functions on [-Tr,r] defined

by

Dd = (f: f(X) F, a(u)exp(-iuX), a(u) =a-u),

Z (1 + Iuj)!a(u)j < d, for some d <

q 12
a e i j

x

DARMA = f: f(X) = 2  a eo , ( 2 > 0),
"2" p 2

Sbe
i j X

j=o

q .2
.2 Z aj z j

C < a j=o < -, for IzI < 1,
T'T p .2

F, b z

o < C < 7<

We set down the following assumptions.

Assumption 1. (Xt is a Gaussian stationary process with the

spectral density f, (k) E: g e C CCR ,and mean 0.
0 A

Here @ is an open set of JR and C is a compact subset of Q.

Assumption 2. The spectral density fe(k) is continuously five

times differentiable with respect to 9 e @, and the derivatives

• ,~~~~~~., -... . .. ........ .. .. . .... .. •..........-.. ...-.......... -.. ....-. .-.. .- -.
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f e/ae, 82 f8/Ba 2 , b3 fe/a8 3 , a 4 fe/be 4 and 5 f9/ae5 belong to Dd.

Assumption 3. There exists d1 > 0 such that

(9) = ( 0 log f9 (x))2d > d, > 0, for all 9 in 0.

Suppose that a stretch XT = (X-...,XT) of the series [X t 3

is available. Let = ( be the covariance matrix of

The (m,n)th element of ] is given by - expfi(m-n)X}f9 (X)dX.

Let AT(8) and BT(e) be TxT-Toeplitz matrices associated with

harmonic functions g(X) and h8 (X), where g, e DRMA, E D

(i.e., the (m,n)th element of AT(e) and BT(e) are given by
rr

,r. exp(i(m-n)X)g(X)dX and rTexp(i(m-n)%)h (X)dk, respectively.T-T ge -e

We impose the following assumptions.

Assumption 4. The functions ge and h, are continuously four times

differentiable with respect to e E G, and the derivatives bg,/be,

.. , 4ge/84, bhe/be, .. , h e/e4 , e E 0, belong to Dd . Also

ge and h9 satisfy

-2he 1 -2
ge(X) he(X) = fe(x) e(). (2.1

Assumption 5. A function bT(e) is four times continuously diff-

erentiable with respect to e, and is written as

bT(e) f e fX) fe(X)dX + O(T-I.

Now consider the following equation;

I -l~

XfMA T e ) 1BT (e )A,(e ) bT , g @. '2.2)
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A minimum contrast estimator eT of 9 ° is defined by a value of e
A

that satisfies the equation (2.2). This estimator 9T includes

the following cases;

Example 1. Put g, = fe, h9 = bf/e and b( 5

then by Theorem 1 in Taniguchi (1983)

bT() =1 f- e1 dX + O(T- 1
-17

The estimator 9 becomes the maximum likelihood estimator (see
T

Taniguchi (1983) or (1985)).

Example 2. Put g= h 1 -2

87

bT(9) = - f dX. Then (2.2) is written as-- I"I

n

X? ( i(m-n)X 1 6 ff 2 dX7T m .... Te e

(2.3)

f f - 1  f dX

We can see that the equation (2.3) is equivalent to

7I IT( k).
_ 0log fe(k) + )d% = 0,

I T XtiX2 Awhere IT(X) = X- - teltI Thus the estimator 8 becomes

_ t=T

the quasi-maximum likeiihood estimator (see Dunsmuir and Hannan

(1976), Hosoya and Taniguchi(1982)).

At first we present the following basic theorem which is
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useful for the higher-order asymptotic theory up to third order

in time series analysis.

Theorem 1. Assume that Assumptions 1-5 hold. Let a be an arbi-

trary fixed number such that 0 < a < 3/8.

(1) There exists a statistic 8T which solves (2.2) such that for

some dI > 0,

PT [18T- oI< dTa-1/] 1 1 - o(T 1), (2.4)
9e [0 T 01 1

uniformly for e E C.
0

(2) For (; T satisfying (2.4),

sup T [(TI(eo))I/2(eT-eo) E B]

B 0o 0

- ?O(x)p(x)dxI = o(T-1), (2.5)
B 3

uniformly for e0 E C, where (o is a class of Borel sets of I

satisfying

sup O (x)pT(x)dx O(e). (2.6)

.iere /(x) - e , and pT(x) = 1 + q(x) + r(x) where q/x

and r(x) are polynomials.

In Section 6 we shall give the coefficients of q(x) and r'x'

by using the spectral density f6 "
-.. ,
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3. Stochastic expansion of minimum contrast estimator.

In this section we derive a stochastic expansion of 9

We set down

= 4- TbT( 9 ),

where HT(9 ) = AT(e)-IBT(9)AT()-.

Let

zl() - rXHT (e)k - Tb (3.1)

Z2 (G) = fTTX T(e)X T - tr T-r(e)T(6)], (3.2)

Z3 (O) =---I H () - tr 6T)H' , (3.3)3() -XT "T( O)k rT(8))'IrT

where H 8) and (8TG)= T(). Henceforth, for

simplicity, we sometimes use A, B, H, 7, Z1, Z2 and Z instead of
2 3

AT( 6 ), BT(G), HT(O), ZT(6), 71(8), Z2 (O) and Z3 (9), respectively.

It is easy to show that

H - A-AA-BA- - A-lBA-IA-A + A-A - , (3.4)

H A -Al*A-1A-1-1 + --l - A- -1A - l

- 1 " -1 l - l l V- 1-
S A B A -BA P + AA PA- A

-L -L -- -- -1 - -1-+ A BA-- AA PA - A- ! - A-AA-A-

+ 2A--IBA-IL-_ A-IVA-I'A - 1 A-I'A-V - t

--.

+AB
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Since the minimum contrast estimator is approximated by simple

functions of Zl , Z2 and Z To give the asymptotic expansion,

we must evaluate the asymptotic cumulants (moments) of Z1 , Z2

and Z The following lemma is useful to evaluate them (see

Taniguchi (1983)).

LEMMA 1. Suppose that fl(X),...,fs(X ) E Dd, gl(X),...,gs(X)

DARMA._ We define(X1,...,g AI )A

D We define , the TxT-Toeplitz type
ARMA* 1

matrices associated with f1 (X),...,fs(X), gl(X),...,gs(X), re-

spectively. Then

T -  tr T A- 2A2.

- T fl ( ) .. fs( )g(X) . C . (X) dX + (T )

We write

EszI(8) = L + o(T-1 ). (3.6)

Here u(8) will be evaluated explicity for some cases in Section 7.

Using Lemma 1 and (2.1), it is not difficult to show the following

lemma.

LEMMA 2. Under Assumptions 1-5, we have

E@[ZI(9)]2 = 1(9) + 0(T- 1  (3.7)

Eq(Z 1 (9)Z2 (9)) = J(8) + 0(T-I), (3.8)

V'(Zl(q)] 3 - 1 K(9) + -I(q)u(8) + 0(T-3 /2)' (39

[ • -.- .- . . . . . .. 4. -. . .. . . . • . . - .4 . . - . . . •. - • • . • - . I
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Ee0(zi(e)z 3 (8)) = (8) + O(T ), (3.10)

E 8(z2 (a) 2 = M(8) + 0(T 1) (3.11)

E ( le~(a) 2 z2 (a)) =-LN8 + -2 .- J(G) i(8) + 0(T-3/c), (3.12)

cumq(Z1 (8),Z 1 (G),Z 1 (8) ..Z(9)) = t'H(6) + 0(T 2 ), (3.13)

T-; () 1(8) + 0(T1) 
3J-

1 b 2-
=q( =- () 3J(S) - K(9) + 0(T ), (3.15)

Eef-T T(8) 4 L(8) -3M(8) - 6N~(8) -H(8)

+ 0(T 1 , (3. 16)

* where

=T 1f 8 X(X-3dr

K ~ j r-r b qX ef(X)-3dx,
-L' -TT l 5

L(9 aj ffx) f6 X *~dX 3 r (T~f --- 2rf x)( ~dX

9 e( ))( fe(x))r9 x7dx

* M(6 e IF rfe(W 3fe(x)- dk f +f~) 2 Y()'~rdk

-. .. . . . . . - 7r . -.r *,U.**-p p. . . .
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lf (b~2 2 -2
+7 f 7 - fe(X)) fe(X)- dX,

_ T 4 -4T2-

%'J fr (%)-dX + " 7'f ] - 2. - f e(X )}f e(x )- 3 d %,

H(e) 3_ " fe(x)) 4fe(X) dX.

Put BT = AI1 PIA I... sIAsI where 1 ,..., slAl,...,As are

TxT-Toeplitz type matrices associated with some harmonic functions

(S-1)~~y Vl s(X) 'u(1)(X) c Dd, .. u. s-) c, D, 9 l(X,) E D'~a  .. vs()

D respectively.

LEMMA 3. Under Assumption 1, for every 6 > 0, and some d > 0,

2
we have

P T- Z T qJBk O -1
- > 2T]=oT ) (3.17)

uniformly for e E Q.

[PROOF] Choose an integer > 1 so that 2rs > 1. By Tchebychev's

inequality, we have

pT

< E[BPT;T - Ee(LPTXT)] 2 /(d 2 T) 2'. (3.18)

Since Ee[ BpTk - Ee(jPTZ)] 2 r = 0(l) (see Lemma 4 of Taniguchi
(1985)), (3.18) implies (3.17).

LEMMA 4. Let T be a random variable which has the stochastic

-

,-._<..1 .. ,. . ., ." - .' .. .. . - .- v . - . . .. .. . . . .- .- v . .. . .- . - " . . . .- .- . .. ,. ,
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expansion

YT = y(3) + T-3/2T' (3.19)

where the distribution of YT(3 ) has the following Edgeworth

expansion:

pr4(3) E B) Z 'E(x)PT'(x )dx + o(T-1), (3.20)

where B is a Borel set of FI1 satisfying (2.6). Also T satisfies

P > (TIT = o(T-), (3.21)

where PT - 0, PTT1/2 -'mas T- e. Then

PIYT e BI 0(x)pT(x)dx + o(T 1), (3.22)

for B E 0 .  0

The above proof proceeds on a similar way to Chibisov (1972).

PROOF OF (1) IN THEOREM 1.

In this proof we develop the discussion by using the argument

similar to that of Bhattacharya and Ghosh (1978) and Taniguchi (1985).

Consider the equation

0 - T-IT(9o) + T- ( 9) T(8o)
32

+ (2T)-1 (8- 0)2 - T

+ (6T)-I(9-o)3 a3 9

+ RT(8), (3.23'
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where RT(8) is the usual remainder in the Taylor expansion, for

which it holds that

IRT()I < T8- 14 sup I T(3.24)i ,' eT le 8( )I-. . )1

In view of Lemma 3, we can see that for every a > 0 there exist

positive constants d3 and d4 such that

. T [iZl( 0 )1 > d3TJ a o(T- ), (3.25)

80a 1PT- O I o = oT

S Z2 ( 0o)I > d 3 TJ = o(T), (3.26)
0

oT IZ 3 (o) I > d3 Ta ] = o(T- 1) (3.27)

PT 3If -(e) Eo .--.. (e° ) > d T o(T- 1 ) (3.28)

PT flRT(e)j > 6_6oI 4 (d TaI] = o(T-). (3.29)
0

Therefore, on a set having PT -probability at least 1 - o(T-),
8 0

for some constants d5 > 0 and d6 > 0 we can rewrite (3.23) as

8-eO = (I(eo)+FT) 1[ ST+(2T)- 1 (8- 8) 
2  b

+ (6T)I( ) 3 T -e

+- - T(Oo) + d 5T18-81 T] ,  (3.30)

where r T and IT are random variables whose absolute values are less

than d,0T-1/24a and CT is a random variable whose absolute value is

less than dT C. There exist a sufficiently large d 7 > 0 and an

integer T O such that if T > T O and i-eo I< dTT/2+a, ('<a<

.' J " . , j . - % v' "
" . , . - 'o 0, ' -0 7' ' % " % . 2 " ' . = ' . " - ' . % ' - - ' " - " . - .
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the right-hand side of (3.30) is less than d T-1/2+. Applying

the Brouwer fixed point theorem to the right-hand side of (3.30)

we have proved (2.4).

Now we set down

VT = VT(eT-8o),

and
zl(e) zl(e)z2 (a) _ 13J(9)+K( ) )2

+ i(e)2  2I(e)3,I ZT ()

+ 1 fz(e)Z( + zl(e) z3(e) + I K()zl(e) 2z2()
I(e)T

+ (3J(e)+K(e)]2Zl (e)3 - 4L(e)+3M(e)+6N(e)+H(8)ZI(e)3I.
21(e6) 2 (1(8)I

LEMMA 5. Under Assumptions 1-5, we have the following stochastic

expansion

/T(aTeo) = U T(8o) + T-3/2,CT, (3.31)

where C T satisfies Pa 0 1IT I > pTF]) = o(T-) for some sequence

0, p -T . as T -.

[ PROOF]

From the equation T(eT = 0, we have

0 = Zl(eo) + T-1/2 2 (eo)VT - IT(o)VT

T o )T IT(o))VT+ 1T_3/2 22 1 b33

1 b 3.32

.'- . -" - ."-. ... " "" "........2T / -. " T' - ' . - ( " - 3
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where 18 < 18T-eOl. We rewrite (3.32) as

z1 (o) Z2(eo)VT + 1

T YT + (17T 77 T6O))3+ 8o ) __IT( 90 )  1 T ( be

+ 11 3 3 + 1 6 4 ))V. (3.33)
6 1T(8o)T be 24 IT(eo)T4 - T(

Noting (2.4), (3.25)-(3.29) with 0 < a < 1/10, we can write (3.33)

as
VT Z1 _aT(l) (.4V T = IT +  '(3.34)

T
, where pT d8T2a]=

where [!aT(1)f > d o(T ), for some d> . Substituting
(3.34) for the right-hand side of (3.33), and noting (3.15) we have

V = Z+ Z1 Z 2  3J+K 2 aT( 2 )T I T /T/I 2A/TI Z + T (3.35)

where P [jaT(2)1 > d 9 T] = o(T_ ), for some d > 0. Again substi-eo T99

tuting (3.35) for the right-hand side of (3.33), and noting (3.16)

* we have
VT = UT(Go) + CT/T3/2 ,  (3.36)

where PT > doT5a = o(T-1), for some d > 0. Since9 0 T' d10T 10(T )S< 1/10, we have the desired result.

REMARK. By Lemma 4, the Edgeworth expansion for /T(e T-o) (up to

order T 1 ) is equal to that for U T(eo) on B e B0. Thus we have

- only to derive the Edgeworth expansion for UT(eo).
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4. Asymptotic expansion of characteristic function.

As we saw in the previous section we have to seek the Edge-

worth expansion for UT(eo). To do so we have to derive the Edge-

worth expansion for Z = (ZI(9), Z2(e), z3 (8)) T . Thus, in this

section, we give an asymptotic expansion of the characteristic

function of Z.

Put

T (t)= E, (et',

where t = (tl,t2 ,t3 )'. Then it is easy to show

,(t) = det I((TxT) - 1?2i I/2 (tlH + t 2 H + t 3 H)1/2-/2

x exp - 1(tlTbT(e) + t 2 trHz +t 3 trH 2 ), (4.1)
VT

where I(TxT) is the TxT-identity matrix. Let pj be the jth latent

1/2 2 2
root of S = 21/2 (tlS 1 + t 2 S2 + t 3 S3 )I / 2  (p1 > ... > PT - 0

Of course each pj is a real number. Then we have

log T(t E) log(.1 2

i4 (tlTbT(e) t 2 trH + t 3 trE). (4.2)

Notice the relation

h 2 ih 3  h4 lh 5

log(1-ih) - ih + - + i - - -h

+ h 6j(l -V)5 Fv r43
o (1- ivh)"

|.



17

where

I I(1- v)5  dv10 (1- ivh) - I

(e.g., Bhattacharya and Rao (1976, p.57)). By (4.3), the relation
" (4.2) is

(2.1 
T 2ip 4p 2  81 .3

log T(t) = -g [- J + -L +
J=l V1 2T 3T1

16p J4 25ip 1 26 p 6 y.

4T2 5T5/2+

- L(tlTbT(e) + t2 trHA +t 3 trHf), (4.4)

where 1y I < 1. Remembering (3.6), we have

log T(t) - itl[- + o(T-1 )) + -- r2 + 4-
1 T 3T1

"2i tr4 16i5  5
+ 4 trS + 5trS + R6 , (4.5)

T T5 2

where JR6 I < ~-trS6 Using Lemma 1 we can rewrite as

trS2 = k= jk + LL + O(T-3/ 2 )}(it.)(itk' (4.6)

8iA3-OTU t-3t 3g, LL7
t - 3 = W -A jk* + O ( T - l ) i t ].- i t ) .J,k,=lJ i r '
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481 t4 =1

T~ ~ (tS Ajk~m + O (T_)
T J,k,2 m=

X (it )(Mt k)(itye(itm'), 48

3itrS5 [A+-'T
T (jkZmn O

16 6 3 (-1)

-trS T (Aikz + (TT j ,k ,M ,mn l

'For examples we can see that Al1 = I(S), A12 =J(9), A 13

A 22 = M(8), A1il1 = K(8), A 112 = N(9), A1111 = H(9), e.t.c..

Thus (4.5) is written as

log T~) it + o(Tf 9

1 3 -3/2.
+ 7 (Aj1k + Bjk/T + O(T ))(t j)(ltk)
j ,k=1

3
+ 1 (Ak~- jkXi + o(f 9 (itj)(itk)(it2)

+ Ajm ±- o(T_ )(it,)(it)(tYt
24T J,i,g,m=l

7: 1203  + 0, )t)(it )(it (it~ )it
+ k -,mn k m

120T14 k P r.-
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We set dwn 0 = (Ajk)9 3x3-matrix, and itii =A/ 2 + t 2 + t 3.t if

is singular it is not difficult to show that

Zl(a) = cl(O)Z 2 (e) + dl(g) = c2 (e)Z3 (G) + d2 (8 ) , a.s.

for some constants ci(e), di(e), (i = 1,2), (4.12)

which implies that the joint distribution of z is reduced to that

of Z Thus, without loss of generality, henceforth we consider

the case when 0 is nonsingular.

LEMMA 6. If we take T sufficiently large, then for a 61 > 0 and

for all t satisfying lit!! < 81AF, there exists a positive definite

matrix Q and polynomial functions Fl(-) and F2 (.) such that

l (t) - A(t:3)I

= expl- t'1t] x Fl(l!ti)-O(T-3/2)

+ expf- t'Qt) x F2 (1tI).O(T-3/ 2 ), (4.13)

where

A(t:3) = exp(- -gtrOtl x Cl + 1

3+ -!-I Z jk (itj )(it k ) ( i t

2 23 u2(it1 )

I J, Bjk(itj (itk) +-T ,k=

U(it I) 3
+ 6 T j k=Ajk (t)(t)(t
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1+ 24 A jkim(itji ) (it k) ('t ) (itm)

j+ 24 k,im=1

3
72T A i k IAj k_,,(itj)(itk)(ite)(itj,)(itk, )(itj,)].

* 2T j~ g,, ,-1

[PROOF] From (4.11) we have

• () =exp(- lt'Qt] x exp[it[-- + o(T-l)1
.T

3 3
. 1 B. (i~tj)(itk) + 1 A (t)ik~t

+ 2T~ Bji A2T jk=l jk+ 6 Jki=1 JkP k

3
+ A jkm(it )(itk t m

24T j,k,i,m=l

+ F3 (Iltl!) 0(T-3/2)], (1.11)

where F3 (-) is a polynomial function. Applying the relation

2 fIZ3 z)
lez - 1 - z - - 1 3 e (4.15)

to the second exponential in the right-hand side of (4.14) we have

IT(t) - A(t:3)l = expf- tYOt)F,[t )(T3/2

+ O(T3/2)F 4 (I!t!)-exp[- Itt]t

(,BTk+ O(T-1/2)) 3. tk)

x exp[ it (" + )T + 7 j(it.)(i

+6(A k A (T- ))(itj)(itk)(ite)

Zd A. + O(T- (it. (itk(it )(it
24T j,k,; ,m 3km M

................
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+2 7  j m (Aj mn + O(T-I )(it.)(it, )(it ,it )(it120T3 / 2 j,k,P,m.,n jin+Km n

+ R6 1], (4.16,

where F4(.) is a polynomial function. Let w > 0 be the smallest

eigen value of Q. Then for sufficiently large T, we can choose

61 > 0 so that

6 3 2 3

j24 j,k,,m= Ajkm

3 3
iJ IA.m - 2 58  IA kmnp

120 j,k,P,m,n kimn 1 j9k, If

> 0. '4.17'

Thus the last exponential term in (4.16) is dominated by

1T-/2 1! tl2 .10T-
exp[61 . + o(l/ ))]exp[,1Hj [F + 0 )+J,

for [!tj <" s 1./", .1_

which implies the existence of Q in (4.!3).

We also have the following lemma.

LEMMA 7. Under Assumptions 1-5, for every ' > 3, ,here exists

62 > 0 such that

.T ,1 < !1 + 46 - q (
2

for all t satisfying t > r/T, where a(-' = r3 ] for scme

constant c.
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, PROOF]
2 2 PTNotice that p =emax e (e-,..,eT)e IS e, we

and e'e = 1. Also we have

eS2e~ = e'{ I/2(tlH + t2H + t3H)§i/2)2e

< 2t2e' 2H 1/2e + 2t 27/2 e

+ 2t 2el2/2 H H7 Z1/2e. (4.2013-40

It is not difficult to show that

e'I /2HZH21/2e < cI ,  (4.21)

e /2A I/2e.< c2 , (4.22)

ec/2 .3, H' 1/2 (4.23)

*where c1, c2 and c3 are some positive constants. For exposition

we prove (4.21). Since f,(X), h8 (X) E Dd and ge eDARwe can

set

f = max f!(X) <

xh 1 = max lhe~ml <,

=  min g8(k) > 0.

Thus, using discussions of Anderson (1971, p.573-4 ) we have
eT' /2Hi:1/2e = e171/2A-1A A1 A  /2e

-1 - A- 1DA- !-I/2e
-r C

-' # "~~ ~ ~ e" Z1/2" A ,° ' -'° -. .1 " -I- A-- I A
'' "

z / e " "" ' " -
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= 2fow e1/2A-IBA-1/2A-1A-l/2BA- 1l/2e

< 2, e'I/2A-IBA-1/2 A- /2BA- Il-:/2e
0 2rrg

f
1l e l/2A 1BA- BA-1§/2e

2rf

- 2 eT/2A-1A-1/2e

4222

f~jh ~ _ f 2h 2
< -T e - < . (4.24)

Thus we have proved (4.21). The proofs of (4.22) and (4.23) are

similar. From (4.20) we have

2 2 ItI12 -d( .
T 1 _< 2 1d 1  (4.25)

for any t, where d is a positive constant. While by Lemma 1,

we get

T- 2
Tp = T trS

j=1 J

1 B + X2r2- ( tlA(k + t 2B ) 3 tC )2dX +  lI (T-l

:ltI!2  A( tA() + t2 B(x) + t 3 C(X) 2' - 2-T t_[I! I

[!tl 2O(2

~-r 2
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where A(X) = qf(X)Of 6(X ,

B(X) = (-2fe(x)- 2( 1(X))2 + f__ + f

and
c(X) = f6f-(X) -3(,Xfe(x))3 _ f2

l3f! ~+ fe(x)- f (,)}2
± f9( b87 9(X))/2.

Since we are now assuming that 2 in (4.11) is nonsingular, the

functions A(X), B(X) and C(X) are linearly independent in the

L2-norm ( j.1 2 dX). So we can show that for sufficiently large T,
-TT

there exists d > 0 such that
12

T-1 F itJ2>d 12, (4.27)

for any t. The relations (4.25) and (4.27) imply that there exist

62 > 0 and q(t) = [cT] such that

2 2 >8 jj 2

Pi a ... > Pq(T) - 2

Noting that

T T,- ,4 2 -1/4
.(t)l = l 1+ T pj)j 1

J=l + -

< (l + 462 )-q(T)/4, for II> m,

.. the proof is completed.

* . -. -. * * . ** °* 9 . . - . - .' * , .
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5. Edgeworth expansion for Z

In this section we shall give the Edgeworth expansion for Z.

We set down B(x.r) Gz e PP: Ilz- x1! < r, x e RP. For a proba-

bility measure P, we denote the variation norm of P by I!P11. The

following lemma is known as a smoothing lemma (see Bhattacharya

and Rao (1976, P.97-98 and p.113)).

LEMMA 8. Let P and Q be probability measures on JPRand MP the

class of all Borel subsets of IP Let 9 be a positive number.

Then there exists a kernel probability measure K such that

sup IP(B) - Q(B)j
.. B EMP

< 21(p- Q)*K~I! + sup Qf(6B)2e (5.1)
7 B EMP

where K satisfies
3

K,(B(O,r)c = 0(() (5.2)

and the Fourier transform K. satisfies

A 4/ 3 / ,1/ 3 e .
Ke(t) 0 for _ltI > 8p/3/i1/3

For B E d3 define

Q(3)(B) JBN(Z:.)[1 + -L Hl(Z

3 2
A H~~ Hllz

Sj,k, =l J T

" --- " " - --" ' ' - " "+- " -" " -"-k' -2 ( - +-- - - " " - - .' " " ' " " .4 " - " -( " - - ' - . " -
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3 3
+ Z EjHj Z . + T

T _~~ i( + T- i k~ =1Ajkiljki(lz)

3
+ Z AjkimHjkim(Z)24T j,k,2 m=l

3
+ ~ ~ ~ ~ k J2---I J~ J', =~ k A ' ' jk ij 'k V '(z )3'  (5.3)

+72T k ,ft l

where z (ZlZZ

N(z:O) = (2r )-3/2 [-1/2 exp1- 1z-I ,

H .l .Js(Z) (-l) s  b ( :ii.. iz •l _____N(z:r2).

N(z:O) bz . z

This measure Z(3)(.) corresponds to the characteristic function

A(t:3) in Lemma 6. Then we have the following lemma.

LEMMA 9. Suppose that Assumptions 1-5 are satisfied. Then

sup IP TZ E B) - Qf 3 )(B)I = o(T-I )

" B 3 ~

B~ E(3

+4sup Q (3 )((bB)2e-), (5.4)

uniformly for e E5, where e = T-1-P 0 < p < 1/2.

[PROOF] Substituting Pq c B) and £uv P() fr i-0<? ir.

Lemma 8, respectively, we get

" . . . .. . ... . .. . ..
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up 8 E B) - Q B

-2 spfIP'< -1(p 
3 ))*K);BE~3

+2 ~ ~~ (3()* B)I ~

Nte tohBat(,T)w hv

-!p Q(3))*K(BI<ITKBI+I~)K()

T( 1) (5.8
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The relations (3.25), (3.26) and (3.27) imply

P T OZII > r' /2) = o(T ) 59

While (5.2) implies

K,B(O,rT/2)c] = O(T 3 3 p 31 o(T )1 (5-10)

Thus we have

P Q(3 ))*Ke(B' = o(T 1) (5.11)

C

for B C B(O,r) c. Now we have only to evaluate

sup(I(P~ Z Q))*Ke(B)I; B CB(O,rT.

By Fourier inversion we have

(2*-3 p3/2 r3 T ^(,))(t~ 1 .d.(.2

By Lemma 6 and noting QZ3 (t)= A(t:3), the right-hand side of (5.12)

* is dominated by

O(T3T-3/2 )I 1116 expf- .tt)x F1 !,.l!

+ expf-.t'Q t) x 2( 1!'~) 1IIKejt) Idt

3TA T (tK tdt
+ U(T) 4/3,<!ti 83T1P/1/3 ~ C '

6111 7 11t!!< 8(3)

5.13'

'I *J
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Evidently the first term of the above is of order O(T-4 /3. Also

by Lemma 7, we have

1T T
i ~~ ~~~ ~~~ °1TFT< 11 t I!<8 ( 3 T+// I - ( ! Id

< 0( )j6 1  <td 4T 1 dl3  + 42)-q(T)/4 dt + o(T - I ),

(5.14)

where d13 and d14 are appropriate positive constants. The above

(5.14) is dominated by

O(T3T+3+3p)(I + 4 62 6 1)-q(T)/4 + o(T
-1 ) = o(T-I). (5.15)

Therefore we have proved

sup[ (PT - Q(3 ))*Ke(B)1; B C B(O,rT)) :

which completes the proof.

I-

- .-. ...... ..-.-. .. -............................--..-- -.-. - .--. ....-... --.......-..... ... -. . . . . ..
-* " " ' , " '- ' ..--. .- 0 '; " 

r
1 " 'i " ' " 

-
" * ' " . . . . " " " ' ". . .
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6. Proof for (2) of Theorem 1.

Consider the following transformation

Wl(q ) = Zl(q )

W 2 (e) = z2 (8) - J(e)I(G)- Zl(q),

W3(9) = Z3(8) - L(8)I(e)-lZl(8). (6.1)

Henceforth, for simplicity we sometimes use W1 , W2 and W3, instead

of W1 (@), W2 (8) and W3 (8), respectively. Evidently (6.1) is a

continuous bijective transformation. We denote (6.1) by W X(Z),

where W = (WI,W2 ,W3 )'. By Lemma 9, we have

sup IP Z 1(B) - Q(3 )[X1 (B))j
B E(3

sup Q( 3 )[ (X- (B)] + o(f 1 ). (6.2)

B eB3

Here we put (3)(B) Q3) X B). Then it is not difficult to

show

= IE 2 )[ +

3 c(l) 3J H (w) + i jk( )H j k )

j=l ' r j,k, =l

( c(3) + c (l)cl))H-- , jk k j. W) w
T j ,k=l H k

1 3
-4- z (l)C(l )u

SJk j ckqm" jkzmw'
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24T j, E m=l JkM j~kiy)

3

72T J,k,i,j'k'-1 jk2 cj~kT2jk~jtkt1(W-)

q q(w)dw, say, (6.3
B

where ( w,w,w 1 , N(W1 :I) = (27-) -1/2 -1/2e

*and N(w2,w 3 :n2) (27)110 11/2exp - 1 1,3)-lw2

2 ( 32C)33) 2x2-matrix.

For examples we can see

cf') = ~ l c±e, ~ J8)()l))
12 3

n2 M(e) -J(e)2I(e)-l 112 N(8) - J(8)K(O)/I(G),

c ( 1 = H(8), e.t.c..

Since X is continuous, we have

a- 1 -B1aBJ

[6X (B).4)

*By the continuity of X, there exists a > 0 such that

Thus we have
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LEMMA 10. Under Assumptions 1-5

iT (3)sup 1 WeB
B e B -B B)

sup Q3[(gB + o(T ), (6.

uniformly for e E G, where a is a positive constant and e = 1 - p

0 < p < 1/2. C

Now we rewrite UT(e) in Lemma 5 as

2 W )W2 1 + 3M (J + K)W(UT(W) - I IT 213

1 (W W -5 - 32)Ww3

12 21 iW T 1 9lW

2 2
S =W 3  (6.8)

We denote (6.8) by S = $1(W), where = (SI,S 2 ,S 3 )'. For sufficiently

*' large T, we can take a set

, MT = (W: I~i < ciT , 0 < a < 1/6, ci > 0, i = 1,2,3]

such that e is a C-mapping on MT.

.

S U

1. T(W

"-'.'<'-"~~~~ ,"S'-.-f°,:-f.-. ."..'W,,',f'¢,2, ".,, .- -.'''" -,... -. " - ,"- ' " . .



33

By (6.6),

supIPT(W E -1 (B 2) - (3)-a(B x F 2 )
B E(B

4. sup Q(3)[(, -'(B x]R2 ))aPJ + o(T-1 ). (6.9)

We can see that

043)(,r-I(B x IR2) = w(Bx]R2 ) )dw

W MTI-I(BB2) T o (

"BX2NTT-I(s))IJIdS + o(T-), (6.10)

where NT = *(MT) and jil is the jaccobian. Since we can solve

so that

S S (J+ )S2 2 2
W I  ( + +) 1 + JS.S 1 -

TT 2/T IT 2T

(23(J_ JK)S 3  L + 3M + 6N + H ( 1o(611)
+ 21T + 6T , (6.11

uniformly on MT, it is not difficult to show that

qT[ N(S ] :0+ P ()

- N(ITS)N(S 2 ,S3: 2 ) x [IT + + T + °(T-)],

(6.12)

uniformly on N where p1 (S) and P 2 (S) are polynomials of S. Thus

- * . * T 9
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we have

(3)-(B x R2 ' N(I S,)N (S 2

TT
p!(s*) p2 (s,)

j j+o(T )]dS +o(T-1

• P1(s) P2(s)
- JB 2j N(TTsl) JJ 2 tJ + + I

x N(S 2 ,S 3 : 2 )dS 2 dS3 dS I + o(T-). (6.13)

Calculating the square bracket in (6.13), and noting that

:"Q(3)[((5-I(B x ]2 F)

< ( 3 )[$-l[(bB)b8 x I] , for some b > 0,

we have

su IP Tr(471(eT e ) E B) Z J(X)p T (x)dxI
BES IB 3

0

4sup T(X)p(x)dx + o(T- 1), (6.14)
o (Bo ( B)be

(remember (6.9)). Here

p (x) = 1 +- + -(x - 3x)
3F 6T

2

1 _ 2 61 _lyl+ (L2-+-%)(x 2 - 1) 6T )(x - +

2'Vl x6 4
7-(x - 15x 4 + /45x 2  15), (6 15

.- ,,



35

where

3/2 1/221~" 1

.9. 3J + 2K

=2r A 7J +J14JK 5K2  L 4N+H 2i.. (2J + K)
I 1 213 i212

6 12(2J +K)(J +K) 4L+12N±3H
1 12

where

Va[,G) () (O) +o(T 1), (.E

-,I = (e e)hCJ + o(T- 1 (6.17)

Remembering (2.6) we have proved (2) of Theorem 1. More explicit

forms of (6.15) for the exact maximum likelihood estimators are

* given in Taniguchi (1985).
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7. Third order asymptotic properties

of minimum contrast estimators.

Taniguchi (1985) discussed third order asymptotic prop-

erties of maximum likelihood estimators in the class of third order

asymptotically median unbiased (AMU) estimators, and showed a cer-

tain optimality of maximum likelihood estimators. Using the Edge-

worth expansions of minimum contrast estimators we can discuss

their third order asymptotic properties in this class.

If an estimator 0T satisfies the equations

lim T(k-l)/2iPT (FT - e) < 0) - 1/21 = 0, (7.1)

lim T(k-l)/2IP [v(eT - 9) > 0) - 1/21 0, (7.2

then 9 is called kth-order asymptotically median unbiased "kth-
T

order AMU for short). We denote the set of kth-order AMTU estimators

by Ak. In general the minimum contrast estimator eT is not third

orde- AMU. To be so a modification of 0T is required. The follow-

ing theorem giies the validity of Edgeworth expansion for modified

estimators of 8T'

THEOREIM 2. Suppose that m(9) is a continuously twice differentiable

"function. Define

0m= 9T
m T Tm(

Then

sup {P [.i (m - e) 3 B]
0

:>,yqT (y dyl = o(T r..
3 M3

* . .. s~..,~ .. .-
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uniformly for 8 e C, where

qT -T (y3 3Yqm3(y) = I + a +vm(6)) y + -I-(y3  3y)

+ 6p 2 +i a]2 + 2m'(G) + Im(9)2 + 2alv~m(O)3 (y2 _ I)

+ + 2- +---- +  --} (y - Ey2 + 3)

2
V'l( - 15 + 45y2 -15).

[PROOF]

Since m(.) is continuously twice differentiable, we have

+T 2(m - 1) = '(T - 8) + 2-.-m(6)

TT

+ Ji-'($T _ ).m'(8) -3/2 9fe )2m,*/ ,

T 2 -7 T f-T-(6  + 3)

where 8 X 8* (7.4)

By (1) of Theorem 1 we have

PT[fJT!-f(T -8)) 2m'(G*)/IrT >2a ]  o(T- ), (7.5)

for 0 < < 1/4. Putting oT = Twic1/2 in Lemma 4, we have only

to derive the Edgeworth expansion for aTU T + T  hr T=

TT T T +T hr

/T T

[i ~ + '/T, UT = i( T  T e)T an T  () yTerm

we ha ve

sup (, T  B -8 > T o(f1 ) (75

B o B

femma implies that

T-,

to derive the --- e p s fr....

'',"~~~~~~~ T T9 T "-"" ." . -- " - ".-" '"• . " ", "" ". .. -

r.-, ~ ~ ( +- M. (9)-.... -'. T' A'j '. '. -. --.. '..-'r." T . -.8) -- and -s .. T , , ,-' v ."-("-, B " -The -rem , -',t--"-h"
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sup lPT&/r!(8m - ) - pTfa U + sT e B)J

= o(T- 1). 
(7.7)

Also we have

sup IpT(aTU + S E: B) - T (x)p (x)dx!
B E0 aTX+s T (B

o(T-). (7.8)

Transforming y = aTx + ST, it is not difficult to show

T T -
j (x)p3 (x)dx =J0(y)qm 3 (y)dy + o(T )1 (7.9)

aTx+STEB B

The relations (7.7), (7.8) and (7.9) imply our assertion.

K(O)
For m)) we denote T= 9  In this case

61r()w(ee) e(n)oT m"

we have

COROLLARY 2.

sup IP TT(^* 8 E B)
B ZB0

YJ xi ¥i x3

JB(x)[ + - + -( - 3x)
B 6vT 6 T

+ 1 (2 24' 135J 2 + 216JK + 70K
2

I 1 3613

23L + 9N + 2H] x 2  I5 4I x23I_ 1 ) + .1[-1 + -)(x - 6x 2  + 3)

2

+L (x6 - 15x4 + 45x2 - 15)]dxf o(T- 1 ) (7.10)
72T

°-7-........-...--". .. --.- : :'. ..-.- .. .... . .--- . - - .----. .. .-. , -" -" --.- "- "-':
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REMARK

Of course 8T belongs to A2 , and we can see that the asymptotic

distribution of 6T (up to second order) coincides with that of the

second order efficient estimator (see Taniguchi (1983) or (1985)).

REMARK

It is easy to check that 9.T is third order AMU. Also it is

ed 2r + A - 2"' that depends on the minimum contrast estimator.

Let ei(i = 1,2) be the modified minimum contrast estimators

with pi, A1., ri and mi(i = 1,2) in place of , , and m, re-

spectively. Then we have

COROLLARY 3. For B = (-a,a), a > 0,

lim T[P[[(T(eI - 6) e B] - PTv 'Y( 2 - 6) E B)]

=1 a0(a)(2(n 2 - n!) + A2 A1 + 2( - u4)), (7.11)

Thus if 2rI + A1 - 2p' is smaller than 2 2 + A2 - 2u , then 9l is

better than P2 in third order sense.

" EXAMPLE 3. Let (X t ) be a Gaussian autoregressive process with the

spectral density

2fe(X) = ___ __
2- H1- 9eiXI2

where lel < 1.

Let el be the modified maximum likelihood estimator of 9 de-

fined in Example 1). Also let 92 be the modified quasi-maximum

• - ° o • o • ". % . o ' -= . , 'o .' ., ° . - j" • , ° . ° .2.
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likelihood estimator of e (defined in Example 2). Then we

have
0,A 3 2  1

* 1.I = 0, AI-( -_22' I = -I

1 (- 2 1

-e 2 - 21 =2

12 2) ' 2 82 r 2  0:(!1-8) (1 - )

For this case, the right-hand side of (7.11) is equal to

8
2

which coincides with the result of Fujikoshi and Ochi (1984).

That is, q is better than e26
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